Polynomial Systems Solving by Fast Linear Algebra

J.-C. Faugère1 P. Gaudry2 L. Huot1 G. Renault1

1: POLSYS Project INRIA Paris-Rocquencourt ; UPMC, Univ Paris 06, LIP6 ; CNRS, UMR 7606, LIP6
2: CARAMEL Project INRIA Grand-Est; Université de Lorraine; CNRS, UMR 7503; LORIA

PolSys Seminar, April 25th
Context

Motivation

Many applications: coding theory, cryptography, computational game theory, optimization etc

What means solving?

Depends on the context.
- find one solution;
- enumerate all the solutions in some field;
- find a certified approximation of the real solutions;
- ...

Problem: univariate polynomial representation (PoSSo)

Let $S = \{f_1, \ldots, f_s\} \subset \mathbb{K}[x_1, \ldots, x_n]$ be a set of polynomial equations with a finite number of solutions which are all simple. Find a univariate polynomial representation of the solutions of S i.e. $h_1, \ldots, h_n \in \mathbb{K}[x_n]$ such that
\[
\{x_1 - h_1 = \cdots = x_{n-1} - h_{n-1} = h_n = 0\}
\]
has the same solutions as S.

L. Huot

PoSSo by Fast Linear Algebra
State of the art

Let D be the number of solutions of S.

Particular case

K: field of characteristic zero. Sub-cubic algorithms to:

- approximate all the real roots: $\tilde{O}(12^n D^2)$ (Mourrain, Pan 1998);
- compute a rational parametrization knowing the multiplicative structure of the quotient ring: $\tilde{O}(n2^n D^{5/2})$ (Bostan, Salvy, Schost 2003).

If the ideal is in Shape Position, the univariate polynomial representation is given by the LEX Gröbner basis.

General case

In the best case, the complexity of computing a LEX Gröbner basis is bounded by $O(nD^3)$.

Our aim

Providing the first algorithm with sub-cubic complexity to compute a univariate polynomial representation of the solutions.
PoSSo and Gröbner basis

In our context PoSSo \equiv computing a LEX Gröbner basis.

Usual algorithm to compute a LEX Gröbner basis

Input: A polynomial system \(S \subset K[x_1, \ldots, x_n] \).

Output: The LEX Gröbner basis of \(\langle S \rangle \).

1. Compute the DRL Gröbner basis of \(\langle S \rangle \);
2. From the DRL Gröbner basis, by using a change of ordering algorithm, compute the LEX Gröbner basis of \(\langle S \rangle \).

Gröbner basis algorithms:

- Historical: (Buchberger 1965) Buchberger’s algorithm;
- Efficient: (Faugère 1999/2002) \(F_4 \) and \(F_5 \).

Change of ordering algorithm:

- (Faugère, Gianni, Lazard, Mora 1993) FGLM;
- (Faugère, Mou 2011/2013) Sparse FGLM.
Gröbner basis and Complexity – State of the art

\((f_1, \ldots, f_n)\) regular sequence with \(\deg(f_i) \leq d\).

\[S = \{f_1, \ldots, f_n\} \]

\(F_4, F_5\) (Bardet, Faugère, Salvy 2005) \(O(d^{\omega n})\)

- **GB DRL**

Order-Change

- **generic:** (Faugère, Mou 2013) \(O\left(\sqrt{\frac{6}{n\pi}} D^2 + \frac{n-1}{n}\right)\)
- **non-generic:** (Faugère, Gianni, Lazard, Mora 1993) \(O(nD^3)\).

GB LEX
Gröbner basis and Complexity – State of the art

\((f_1, \ldots, f_n)\) regular sequence with \(\deg(f_i) \leq d\).

\[S = \{f_1, \ldots, f_n\} \]

\[F_4, F_5 \ (\text{Bardet, Faugère, Salvy 2005}) \quad O(d^{\omega n}) \]

\[\text{GB DRL} \]

\[\text{Order-Change} \]

\[\text{Bottleneck} \]

- generic: \((\text{Faugère, Mou 2013}) \quad O \left(\sqrt{\frac{6}{n\pi}} D^2 + \frac{n-1}{n} \right) \)
- non-generic: \((\text{Faugère, Gianni, Lazard, Mora 1993}) \quad O(nD^3)\).
Gröbner basis and Complexity – Contributions

\((f_1, \ldots, f_n)\) regular sequence with \(\text{deg}(f_i) \leq d\).

\[S = \{f_1, \ldots, f_n\} \]

\(F_4, F_5\) (Bardet, Faugère, Salvy 2005) \(O(d^\omega n)\)

Order-Change

- \(d\) fixed integer:
 - deterministic (Shape Position): \(O(\log(D)^{\omega+1}D^\omega)\);
 - probabilistic (radical): \(O(\log(D)D^\omega)\);
- \(d\) non fixed parameter:
 - probabilistic (radical): \(O(\log(D)D^\omega)\);
Contributions

Shape Position case

An ideal I is said to be in *Shape Position* if its LEX Gröbner basis if of the form:

$$\{x_1 - h_1(x_n), \ldots, x_{n-1} - h_{n-1}(x_n), h_n(x_n)\}.$$

Main results

Let $S = \{f_1, \ldots, f_n\} \subset K[x_1, \ldots, x_n]$ with $\deg(f_i) \leq d$. If (f_1, \ldots, f_n) is a regular sequence then

- if d is a **fixed integer** and $\langle S \rangle$ is in *Shape Position* then there exists a deterministic algorithm solving the PoSSo problem in $\tilde{O}(d^{\omega n} + D^{\omega})$;
Contributions

Shape Position case

An ideal I is said to be in *Shape Position* if its LEX Gröbner basis is of the form:

$$\{x_1 - h_1(x_n), \ldots, x_{n-1} - h_{n-1}(x_n), h_n(x_n)\}.$$

Main results

Let $S = \{f_1, \ldots, f_n\} \subset \mathbb{K}[x_1, \ldots, x_n]$ with $\deg(f_i) \leq d$. If (f_1, \ldots, f_n) is a regular sequence then

- if d is a **fixed integer** and $\langle S \rangle$ is in *Shape Position* then there exists a deterministic algorithm solving the PoSSo problem in $\tilde{O}(d^{\omega n} + D^\omega)$;
- if d is a **fixed or non fixed parameter** then there exists a Las Vegas algorithm solving the PoSSo problem in $\tilde{O}(d^{\omega n} + D^\omega)$.

If the Bézout's bound is reached $\tilde{O}(d^{\omega n} + D^\omega) = \tilde{O}(D^\omega)$ where $2 \leq \omega < 2.3727$ is the linear algebra constant.
Contributions

Shape Position case

An ideal I is said to be in *Shape Position* if its LEX Gröbner basis is of the form:

$$\{x_1 - h_1(x_n), \ldots, x_{n-1} - h_{n-1}(x_n), h_n(x_n)\}.$$

Main results

Let $S = \{f_1, \ldots, f_n\} \subset K[x_1, \ldots, x_n]$ with $\deg(f_i) \leq d$. If (f_1, \ldots, f_n) is a regular sequence then

- if d is a fixed integer and $\langle S \rangle$ is in *Shape Position* then there exists a deterministic algorithm solving the PoSSo problem in $\tilde{O}(d^\omega n^2 + D^\omega)$;
- if d is a fixed or non fixed parameter then there exists a Las Vegas algorithm solving the PoSSo problem in $\tilde{O}(d^\omega n^2 + D^\omega)$.

If the Bézout’s bound is reached $\tilde{O}(d^\omega n^2 + D^\omega) = \tilde{O}(D^\omega)$ where $2 \leq \omega < 2.3727$ is the linear algebra constant.
Change of ordering algorithm

Given G_{drl} be the DRL Gröbner basis of an ideal $I \subset \mathbb{K}[x_1, \ldots, x_n]$.

I has a finite number of solutions $D \Rightarrow V = \mathbb{K}[x_1, \ldots, x_n]/\langle G_{drl} \rangle$ is a \mathbb{K}-vector space of dimension D.

Let $B = \{1 = \epsilon_1 < \cdots < \epsilon_D\}$ be the canonical basis of V.

Algorithm

1. Compute the multiplicative structure of V i.e. the multiplication matrices T_1, \ldots, T_n with

 $T_i = \begin{pmatrix}
 \text{NF}_{drl}(\epsilon_1 x_i) & \cdots & \text{NF}_{drl}(\epsilon_D x_i) \\
 \star & \cdots & \star \\
 \vdots & \ddots & \vdots \\
 \star & \cdots & \star
 \end{pmatrix}

 ϵ_1

2. From this multiplicative structure, recover the LEX Gröbner basis.
Key ideas

(Sparse) FGLM

- Multiplication matrices
 \(nD \) normal forms \(\equiv \) dependent matrix-vector products
 \(O(nD^3) \) arithmetic operations

- LEX Gröbner basis
 \(2D \) matrix-vector products
 \(T^j r \) for \(j = 0, \ldots, 2D - 1 \)
 \(O(D^3) \) arithmetic operations

This work
Key ideas

(Sparse) FGLM

- **Multiplication matrices**
 - nD normal forms \equiv dependent matrix-vector products
 - $O(nD^3)$ arithmetic operations

- **LEX Gröbner basis**
 - $2D$ matrix-vector products
 - $T^j r$ for $j = 0, \ldots, 2D - 1$
 - $O(D^3)$ arithmetic operations

This work

- **Multiplication matrices**
 - $\log_2(D)$ row echelon form
 - Fast matrix multiplication
 - $\tilde{O}(D^\omega)$ arithmetic operations

- **LEX Gröbner basis**
 - $2 \log_2(D)$ matrix products
 - Fast matrix multiplication
 - $\tilde{O}(D^\omega)$ arithmetic operations
Fast Univariate Polynomial Representation
Hypothesis

I is in *Shape Position* i.e.

$$G_{\text{lex}} = \{x_1 - h_1(x_n), \ldots, x_{n-1} - h_{n-1}(x_n), h_n(x_n)\}$$

where $\deg(h_n) = D$ and $\deg(h_i) = D - 1$ for $i = 1, \ldots, n - 1$.

Problem

Given G_{drl} and the multiplication matrices T_1, \ldots, T_n compute the polynomials h_n and $h_i = \sum_{k=0}^{D-1} c_{i,k} x_n^k$ for $i = 1, \ldots, n - 1$.
Sparse change of ordering: Part 1

Faugère, Mou 2011 and 2013

1. Find the univariate polynomial $h_n(x_n)$
 Let r be a random vector.
 1. Construct $S = \langle r, T_n^i \mathbf{1} \rangle : i = 0, \ldots, 2D - 1$.
 Note that $\langle r, T_n^i \mathbf{1} \rangle = \langle (T_n^t)^i r, \mathbf{1} \rangle$
 $\Rightarrow O(ND)$
 2. Berlekamp-Massey \Rightarrow minimal polynomial of $S = \mu$.
 If $\deg(\mu) = D$ then $h_n = \mu$
 $\Rightarrow O(\log_2(D)^2 D)$

2. Recover the coefficients $c_{i,k}$ by solving structured linear systems (Hankel matrices).
 $\Rightarrow O(n \log_2(D)^2 D)$
Sparse change of ordering

Lemma
From G_{drl}, $T_i \mathbf{1}$ can be computed without T_i.

Theorem (Faugèere and Mou)
Given T_n and G_{drl} of an ideal in *Shape Position*, the LEX Gröbner basis can be computed in

- $O(D(N + n \log_2(D)^2))$ (probabilistic)
- $O(D(N + D(n + \log_2(D) \log_2(\log_2(D)))))$ (deterministic)

arithmetic operations where N is the number of non zero entries in T_n.

Open issue
If T_n is assumed to be dense $\Rightarrow O(D^3)$ arithmetic operations.
How to compute efficiently $T^j \mathbf{r}$ for $j = 0, \ldots, 2D - 1$ with $T = T_n^t$?
Computing $T^j r$ for $j = 0, \ldots, 2D - 1$

1. Compute $T^2, T^4, \ldots, T^{2^\lceil \log_2(D) \rceil}$ with $\lceil \log_2(D) \rceil$ multiplication matrices.

 \[O(\log_2(D)D^\omega) \text{ arithmetic operations.} \]

2. (Keller-Gehrig) Compute $\lceil \log_2(D) \rceil$ multiplication matrices of the form

 \[
 T^2(T^3 \mid r) = (T^3 r \mid T^2 r) \\
 T^4(T^3 r \mid T^2 r \mid T^r \mid r) = (T^7 r \mid T^6 r \mid T^5 r \mid T^4 r) \\
 \vdots \\
 T^{2^\lceil \log_2(D) \rceil}(T^{2^\lceil \log_2(D) \rceil - 1} \mid \ldots \mid r) = (T^{2D-1} r \mid T^{2D-2} r \mid \ldots \mid T^{2^\lceil \log_2(D) \rceil} r).
 \]

 \[O(\log_2(D)D^\omega) \text{ arithmetic operations.} \]
Fast univariate polynomial representation

Theorem

Given \(T_n \) and \(G_{drl} \) of an ideal in \textit{Shape Position}, the LEX Gröbner basis can be computed in

- \(O(\log_2(D)(D^\omega + n \log_2(D)D)) \) (probabilistic);
- \(O(\log_2(D)D^\omega + D^2(n + \log_2(D)\log_2(\log_2(D)))) \) (deterministic).

Open issue

Compute \(T_n \) with less than \(O(nD^3) \) arithmetic operations.
Multiplication Matrices
Computing T_1, \ldots, T_n: the original algorithm

Computing T_1, \ldots, T_n requires to compute $\text{NF}_{\text{drl}}(\epsilon_i x_j)$ for $i = 1, \ldots, D$ and $j = 1, \ldots, n$.

\[
T_i = \begin{pmatrix}
\text{NF}_{\text{drl}}(\epsilon_1 x_i) & \cdots & \text{NF}_{\text{drl}}(\epsilon_D x_i) \\
\star & \cdots & \star \\
\vdots & \ddots & \vdots \\
\star & \cdots & \star \\
\end{pmatrix} \epsilon_i
\]

Let denote,
- $E(I) = \{\text{LT}_{\text{drl}}(g) \mid g \in G_{\text{drl}}\}$;
- $F = \{\epsilon_i x_j \mid i = 1, \ldots, D \text{ and } j = 1, \ldots, n\} \setminus B$.

Computing T_1, \ldots, T_n: the original algorithm

Computing T_1, \ldots, T_n requires to compute $\text{NF}_{drl}(\epsilon_i x_j)$ for $i = 1, \ldots, D$ and $j = 1, \ldots, n$.

Let denote,

- $E(I) = \{\text{LT}_{drl}(g) \mid g \in G_{drl}\}$;
- $F = \{\epsilon_i x_j \mid i = 1, \ldots, D \text{ and } j = 1, \ldots, n\} \setminus B$.

Proposition (Faugère, Gianni, Lazard, Mora)

Let $t = \epsilon_i x_j$; t can be

1. either in B i.e. $t = \epsilon_k$ for some $k > i$;
2. or in $E(I)$ i.e. $t = \text{LT}_{drl}(g)$ with $g \in G_{drl}$;
3. or in $F \setminus E(I)$ i.e. $t = x_k t'$ with $t' \in F$.

Complexity $\#F \leq nD \Rightarrow$ at most nD matrix-vector products.

$O(nD^3)$ arithmetic operations.
Computing T_1, \ldots, T_n: the original algorithm

Computing T_1, \ldots, T_n requires to compute $\text{NF}_{\text{drl}}(\epsilon_i x_j)$ for $i = 1, \ldots, D$ and $j = 1, \ldots, n$.

Let denote,

- $E(I) = \{\text{LT}_{\text{drl}}(g) \mid g \in \mathcal{G}_{\text{drl}}\}$;
- $F = \{\epsilon_i x_j \mid i = 1, \ldots, D \text{ and } j = 1, \ldots, n\} \setminus B$.

Proposition (Faugère, Gianni, Lazard, Mora)

Let $t = \epsilon_i x_j$; t can be

1. either in B i.e. $t = \epsilon_k$ for some $k > i$;
2. or in $E(I)$ i.e. $t = \text{LT}_{\text{drl}}(g)$ with $g \in \mathcal{G}_{\text{drl}}$;
3. or in $F \setminus E(I)$ i.e. $t = x_k t'$ with $t' \in F$.

\[\Rightarrow \text{NF}_{\text{drl}}(t) = t \]
Computing T_1, \ldots, T_n: the original algorithm

Computing T_1, \ldots, T_n requires to compute $\text{NF}_\text{drl}(\epsilon_i x_j)$ for $i = 1, \ldots, D$ and $j = 1, \ldots, n$.

Let denote,

- $E(I) = \{\text{LT}_\text{drl}(g) \mid g \in \mathcal{G}_\text{drl}\}$;
- $F = \{\epsilon_i x_j \mid i = 1, \ldots, D \text{ and } j = 1, \ldots, n\} \setminus B$.

Proposition (Faugère, Gianni, Lazard, Mora)

Let $t = \epsilon_i x_j$; t can be

1. either in B i.e. $t = \epsilon_k$ for some $k > i$;
2. or in $E(I)$ i.e. $t = \text{LT}_\text{drl}(g)$ with $g \in \mathcal{G}_\text{drl}$;
3. or in $F \setminus E(I)$ i.e. $t = x_k t'$ with $t' \in F$.

$\Rightarrow \text{NF}_\text{drl}(t) = t$

$\Rightarrow \text{NF}_\text{drl}(t) = t - g$
Computing T_1, \ldots, T_n: the original algorithm

Computing T_1, \ldots, T_n requires to compute $\text{NF}_{\text{drl}}(\epsilon_{i}x_{j})$ for $i = 1, \ldots, D$ and $j = 1, \ldots, n$.

Let denote,

- $E(I) = \{\text{LT}_{\text{drl}}(g) \mid g \in \mathcal{G}_{\text{drl}}\}$;
- $F = \{\epsilon_{i}x_{j} \mid i = 1, \ldots, D \text{ and } j = 1, \ldots, n\} \setminus B$.

Proposition (Faugère, Gianni, Lazard, Mora)

Let $t = \epsilon_{i}x_{j}$; t can be

- (I) either in B i.e. $t = \epsilon_{k}$ for some $k > i$; $\Rightarrow \text{NF}_{\text{drl}}(t) = t$
- (II) or in $E(I)$ i.e. $t = \text{LT}_{\text{drl}}(g)$ with $g \in \mathcal{G}_{\text{drl}}$; $\Rightarrow \text{NF}_{\text{drl}}(t) = t - g$
- (III) or in $F \setminus E(I)$ i.e. $t = x_{k}t'$ with $t' \in F$. $\Rightarrow \text{NF}_{\text{drl}}(t) = \sum_{\ell=1}^{D} \alpha_{\ell}\text{NF}_{\text{drl}}(x_{k}\epsilon_{\ell})$ where $\text{NF}_{\text{drl}}(t') = \sum_{i=\ell}^{D} \alpha_{\ell}\epsilon_{\ell}$
Computing T_1, \ldots, T_n: the original algorithm

Computing T_1, \ldots, T_n requires to compute $\text{NF}_{\text{drl}}(\epsilon_i x_j)$ for $i = 1, \ldots, D$ and $j = 1, \ldots, n$.

Let denote,

- $E(I) = \{\text{LT}_{\text{drl}}(g) \mid g \in \mathcal{G}_{\text{drl}}\}$;
- $F = \{\epsilon_i x_j \mid i = 1, \ldots, D$ and $j = 1, \ldots, n\} \setminus B$.

Proposition (Faugère, Gianni, Lazard, Mora)

Let $t = \epsilon_i x_j$; t can be

(I) either in B i.e. $t = \epsilon_k$ for some $k > i$;\[\Rightarrow \text{NF}_{\text{drl}}(t) = t \]

(II) or in $E(I)$ i.e. $t = \text{LT}_{\text{drl}}(g)$ with $g \in \mathcal{G}_{\text{drl}}$;\[\Rightarrow \text{NF}_{\text{drl}}(t) = t - g \]

(III) or in $F \setminus E(I)$ i.e. $t = x_k t'$ with $t' \in F$.\[\Rightarrow \text{NF}_{\text{drl}}(t) = \sum_{\ell=1}^{D} \alpha_{\ell} \text{NF}_{\text{drl}}(x_k \epsilon_{\ell}) \text{ where } \text{NF}_{\text{drl}}(t') = \sum_{i=\ell}^{D} \alpha_{\ell} \epsilon_{\ell} \]

Complexity

$\#F \leq nD \Rightarrow$ at most nD matrix-vector products.

$O(nD^3)$ arithmetic operations
Computing T_1, \ldots, T_n using fast linear algebra

The normal forms of all the monomials of same degree can be computed simultaneously.

$$M = \begin{bmatrix}
\begin{array}{cccc}
1 & * & \cdots & * \\
0 & 1 & \cdots & * \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 \\
\end{array}
\end{bmatrix}
\begin{bmatrix}
\begin{array}{c}
1 \\
* \\
\vdots \\
* \\
\end{array}
\end{bmatrix}
\begin{bmatrix}
\begin{array}{c}
* \\
* \\
\vdots \\
* \\
\end{array}
\end{bmatrix}
\begin{bmatrix}
\begin{array}{c}
* \\
* \\
\vdots \\
* \\
\end{array}
\end{bmatrix}
$$

where $F_d = \{ t \in F \mid \deg(t) = d \} = \{ t_i < \cdots < t_{i+s_d} \}$

- $\tilde{f}_i = t_i - \text{NF}_{drl}(t_i)$
- If $t_i \in E(I)$ then $f_i = \tilde{f}_i = g$ with $g \in G_{drl}$ st $\text{LT}_{drl}(g) = t_i$.
- Else $t_i \in F \setminus E(I) \Rightarrow t_i = x_k t_j$ and $f_i = x_k \tilde{f}_j = t_i + \sum_{i=1}^{D} \alpha_j x_k e_j$.

where $F_d = \{ t \in F \mid \deg(t) = d \} = \{ t_i < \cdots < t_{i+s_d} \}$

- $\tilde{f}_i = t_i - \text{NF}_{drl}(t_i)$
- If $t_i \in E(I)$ then $f_i = \tilde{f}_i = g$ with $g \in G_{drl}$ st $\text{LT}_{drl}(g) = t_i$.
- Else $t_i \in F \setminus E(I) \Rightarrow t_i = x_k t_j$ and $f_i = x_k \tilde{f}_j = t_i + \sum_{i=1}^{D} \alpha_j x_k e_j$.

Computing T_1, \ldots, T_n using fast linear algebra

M: matrix of size at most $(nD \times (n + 1)D)$.
Computing the row echelon form of M can be done in $O(n^\omega D^\omega)$ arithmetic operations.

Theorem

Given G_{drl}, computing all the multiplication matrices T_1, \ldots, T_n can be done in

$$O(d_{\text{max}} n^\omega D^\omega)$$ arithmetic operations

where $d_{\text{max}} = \max\{\deg(t) \mid t \in F\} = \max\{\deg(g) \mid g \in G_{drl}\}$.

Regular System

Let $S = \{f_1, \ldots, f_n\}$ with $\deg(f_i) \leq d$ and (f_1, \ldots, f_n) is a regular sequence.

- Macaulay’s bound $\Rightarrow d_{\text{max}} \leq n(d - 1) + 1$;
- Bézout’s bound $\Rightarrow D \leq d^n$.

If d is a fixed integer then computing T_1, \ldots, T_n given G_{drl} can be done in

$$O(n^{\omega+1} D^\omega) = O(\log_2(D)^{\omega+1} D^\omega)$$ arithmetic operations.
Gröbner basis and Complexity – Contributions

(f_1, \ldots, f_n) regular sequence with $\deg(f_i) \leq d$.

$S = \{f_1, \ldots, f_n\}$

F_4, F_5 (Bardet, Faugère, Salvy 2005) $O(d^{\omega n})$

GB DRL

Order-Change

If d is a fixed integer and $\langle f_1, \ldots, f_n \rangle$ is in *Shape Position*: $O(n\omega^{+1}D^\omega + \log_2(D)D^\omega) = O(\log_2(D)^{\omega+1}D^\omega)$ (deterministic)

GB LEX
Gröbner basis and Complexity – Contributions

(f_1, \ldots, f_n) regular sequence with $\deg(f_i) \leq d$.

$S = \{f_1, \ldots, f_n\}$

F_4, F_5 (Bardet, Faugère, Salvy 2005) $O(d^{\omega n})$

GB DRL

Order-Change

If d is a fixed integer and $\langle f_1, \ldots, f_n \rangle$ is in \textit{Shape Position}:

$O(n^{\omega+1} D^\omega + \log_2(D)D^\omega) = O(\log_2(D)^{\omega+1} D^\omega)$ (deterministic)

GB LEX

Since we need only T_n, can we compute it more efficiently?
Construction of T_n: the generic case

To compute T_n we only need $\text{NF}_{\text{drl}}(\epsilon_i x_n)$ for $i = 1, \ldots, D$.

Proposition

For generic ideals, $\epsilon_i x_n \in B \cup E(I)$ for $i = 1, \ldots, D$.
Construction of T_n: the generic case

To compute T_n we only need $NF_{drl}(\epsilon_ix_n)$ for $i = 1, \ldots, D$.

Proposition

For generic ideals, $\epsilon_ix_n \in B \cup E(I)$ for $i = 1, \ldots, D$.

Moreno-Socías

For any instantiation of $\deg x_j$ for $j \in \{1, \ldots, n-1\} \setminus \{i\}$
Construction of T_n: the generic case

To compute T_n we only need $\text{NF}_{\text{drl}}(\epsilon_i x_n)$ for $i = 1, \ldots, D$.

Proposition

For generic ideals, $\epsilon_i x_n \in B \cup E(I)$ for $i = 1, \ldots, D$.

Moreno-Socias

For any instantiation of deg_{x_j} for $j \in \{1, \ldots, n - 1\} \setminus \{i\}$
Construction of T_n: the generic case

To compute T_n we only need $\text{NF}_{\text{drl}}(\epsilon_i x_n)$ for $i = 1, \ldots, D$.

Proposition

For generic ideals, $\epsilon_i x_n \in B \cup E(I)$ for $i = 1, \ldots, D$.

Moreno-Socias

For any instantiation of $\deg x_j$ for $j \in \{1, \ldots, n - 1\} \setminus \{i\}$
Construction of T_n: the generic case

To compute T_n we only need $\text{NF}_{\text{drl}}(\epsilon_i x_n)$ for $i = 1, \ldots, D$.

Proposition

For generic ideals, $\epsilon_i x_n \in B \cup E(I)$ for $i = 1, \ldots, D$.

Moreno-Socias

For any instantiation of $\deg x_j$ for $j \in \{1, \ldots, n - 1\} \setminus \{i\}$
Construction of T_n: the generic case

To compute T_n we only need $\text{NF}_{drl}(\epsilon_i x_n)$ for $i = 1, \ldots, D$.

Proposition

For generic ideals, $\epsilon_i x_n \in B \cup E(I)$ for $i = 1, \ldots, D$.

Moreno-Socias

For any instantiation of \deg_{x_j} for $j \in \{1, \ldots, n-1\} \setminus \{i\}$
Construction of T_n: the generic case

To compute T_n we only need $\text{NF}_{\text{drl}}(\epsilon_ix_n)$ for $i = 1, \ldots, D$.

Proposition

For generic ideals, $\epsilon_ix_n \in B \cup E(I)$ for $i = 1, \ldots, D$.

Moreno-Socias

For any instantiation of $\deg x_j$ for $j \in \{1, \ldots, n-1\} \setminus \{i\}$
Construction of T_n: the non-generic case

Galligo, Bayer and Stillman, Pardue

Let I be an homogeneous ideal. Let p denotes the characteristic of \mathbb{K}. If $p = 0$ or if p is sufficiently large then there exists a Zariski open subset $U \subset \text{GL}(\mathbb{K}, n)$ such that $\forall g \in U$, $g \cdot I$ has the structure of generic ideals.

Can be generalized to affine ideals.

Theorem

Let p denotes the characteristic of \mathbb{K}. If $p = 0$ or if p is sufficiently large and \mathbb{K} too then no arithmetic operations are required to compute T_n of $g \cdot I$ where g is randomly chosen in $\text{GL}(\mathbb{K}, n)$.
New algorithm for PoSSo

Shape Lemma

Let I be a **radical** ideal. There exists a Zariski open subset $U' \subset \text{GL}(K, n)$ such that for all $g \in U'$, $g \cdot I$ is in **Shape Position**.

Another algorithm for PoSSo.

Input: A polynomial system $S = \{f_1, \ldots, f_n\} \subset K[x_1, \ldots, x_n]$ generating a radical ideal.

Output: g in $\text{GL}(K, n)$ and the LEX Gröbner basis of $\langle g \cdot S \rangle$ or **fail**.

1. Choose randomly g in $\text{GL}(K, n)$;
2. Compute G_{drl} the DRL Gröbner basis of $g \cdot S$;
3. **if** T_n can be read from G_{drl} **then**
 - Extract T_n from G_{drl};
 - **if** $\langle g \cdot S \rangle$ is in **Shape Position** **then**
 - From T_n and G_{drl} compute G_{lex};
 - **return** g and G_{lex};
4. **return** **fail**;
New algorithm for PoSSo: Probability and Complexity

Probability of success

Let p be the characteristic of \mathbb{K} and P the probability of success.

- If $p = 0$, then $P = 1$;
- If $p > \sum_{i=1}^{n} (\deg(f_i) - 1) + 1$, then

 $$P \geq 1 - \frac{1}{\#\mathbb{K}} \left(\frac{D(D-1)}{2} + (\sum_{i=1}^{n} (\deg(f_i) - 1) + 1) nD \right).$$

Complexity

Let d such that $\deg(f_i) \leq d$.

- Compute G_{drl} of $\langle g \cdot S \rangle$:
 $$O(d \omega n)$$ arithmetic operations;
- Compute T_n: no arithmetic operation;
- Compute G_{lex} given T_n:
 $$O(\log_2(D)(D \omega + n \log_2(D) D))$$ arithmetic operations.

Total: $$O(d \omega n + \log_2(D)(D \omega))$$ arithmetic operations.
New algorithm for PoSSo: Probability and Complexity

Probability of success

Let \(p \) be the characteristic of \(\mathbb{K} \) and \(P \) the probability of success.

- If \(p = 0 \), then \(P = 1 \);
- If \(p > \sum_{i=1}^{n}(\deg(f_i) - 1) + 1 \), then
 \[
 P \geq 1 - \frac{1}{\#\mathbb{K}} \left(\frac{D(D-1)}{2} + (\sum_{i=1}^{n}(\deg(f_i) - 1) + 1) nD \right).
 \]

Complexity

Let \(d \) such that \(\deg(f_i) \leq d \).

- Compute \(G_{\text{drl}} \) of \(\langle g \cdot S \rangle \): \(O(d^{\omega n}) \) arithmetic operations;
- Compute \(T_n \): no arithmetic operation;
- Compute \(G_{\text{lex}} \) given \(T_n \): \(O(\log_2(D)(D^\omega + n \log_2(D)D)) \) arithmetic operations.

Total: \(O(d^{\omega n} + \log_2(D)D^\omega) \) arithmetic operations.
Experiments

\[\mathcal{I} = \langle f_1, \ldots, f_n \rangle \text{ where } f_i = x_i^2 + \sum_{k=1}^{n} \left(c_k x_k + \sum_{j > i \land j \neq k} c_{k,j} x_k x_j \right) \text{ with } c_k, c_{k,j} \in \mathbb{K}. \]

\[\rightsquigarrow \mathcal{G}_{\text{drl}} = \{ f_1, \ldots, f_n \} \]

Normal forms to compute: \(x_n^2 \cdot m \) for all monomial \(m \) linear in each the \(n - 1 \) first variables \(\Rightarrow 2^{n-1} - 1 \).

<table>
<thead>
<tr>
<th>(n)</th>
<th>Algorithm</th>
<th>(D)</th>
<th>DRL</th>
<th>(T_n)</th>
<th>Univariate polynomial representation</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>(F_5 \rightarrow \text{FGLM})</td>
<td>512</td>
<td>0.00s</td>
<td>255NF 12.81s</td>
<td>0.29s</td>
<td>13.10s</td>
</tr>
<tr>
<td>9</td>
<td>This work</td>
<td>512</td>
<td>0.00s</td>
<td>0.00s</td>
<td>0.01s</td>
<td>0.01s</td>
</tr>
<tr>
<td>11</td>
<td>(F_5 \rightarrow \text{FGLM})</td>
<td>(2^{11})</td>
<td>0.00s</td>
<td>1023NF 7520.89s</td>
<td>(> 2 \text{ days})</td>
<td>(> 2 \text{ days})</td>
</tr>
<tr>
<td>11</td>
<td>This work</td>
<td>(2^{11})</td>
<td>5.02s</td>
<td>0.15s</td>
<td>0.13s</td>
<td>5.30s</td>
</tr>
<tr>
<td>13</td>
<td>(F_5 \rightarrow \text{FGLM})</td>
<td>(2^{13})</td>
<td>0.00s</td>
<td>4095NF (> 2 \text{ days})</td>
<td>(> 2 \text{ days})</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>This work</td>
<td>(2^{13})</td>
<td>156.67s</td>
<td>2.36s</td>
<td>25.80s</td>
<td>184.83s</td>
</tr>
</tbody>
</table>
To summarize

\[S = \{f_1, \ldots, f_n\} \text{ with } \deg(f_i) \leq d. \]

New algorithms

- PoSSo
- Change of ordering
 - Multiplication matrices
 - Univariate polynomial representation

<table>
<thead>
<tr>
<th></th>
<th>Deterministic</th>
<th>Probabilistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplication matrices</td>
<td>(O(dn^{\omega+1}D^\omega))</td>
<td>Free</td>
</tr>
<tr>
<td>Univariate polynomial representation</td>
<td>(O(\log_2(D)D^\omega))</td>
<td>(O(\log_2(D)D^\omega))</td>
</tr>
</tbody>
</table>

New complexity for PoSSo (simple roots)

- \(d\) **fixed** integer:
 - Deterministic: (Shape Position) \(O(d^{\omega n} + \log_2(D)^{\omega+1}D^\omega)\) arithmetic operations;
 - Probabilistic: \(O(d^{\omega n} + \log_2(D)D^\omega)\) arithmetic operations;

- \(d\) **non fixed** parameter:
 - Probabilistic: \(O(d^{\omega n} + \log_2(D)D^\omega)\) arithmetic operations.